Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Mapping crop types in fragmented arable landscapes using AVIRIS-NG imagery and limited field data

AUTHORS

Eric Ariel L. Salas , Sakthi Kumaran Subburayalu, Brian Slater, Kaiguang Zhao, Bimal Bhattacharya, Rojalin Tripathy, Ayan Das, Rahul Nigam, Rucha Dave & Parshva Parekh

ABSTRACT

The fragmented nature of arable landscapes and diverse cropping patterns often thwart the precise mapping of crop types. Recent advances in remote-sensing technologies and data mining approaches offer a viable solution to this mapping problem. We demonstrated the potential of using hyperspectral imaging and an ensemble classification approach that combines five machine-learning classifiers to map crop types in the Anand District of Gujarat, India. We derived a set of narrow/broad-band indices from the Airborne Visible Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) imagery to represent spectral variations and identify target classes and their distribution patterns. The results showed that Maximum Entropy (MaxEnt) and Generalised Linear Model (GLM) had strong discriminatory image classification abilities with Area Under the Curve (AUC) values ranging between 0.75 and 0.93 for MaxEnt and between 0.73 and 0.92 for GLM. The ensemble model resulted in improved accuracy scores compared to individual models. We found the Photochemical Reflectance Index (PRI) and Moment Distance Ratio Right/Left (MDRRL) to be important predictors for target classes such as wheat, legumes, and eggplant. Results from the study revealed the potential of using one-class ensemble modelling approach and hyperspectral images with limited field dataset to map agricultural systems that are fragmented in nature.

Access the full paper here.