Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Vegetation Water Content Prediction: Towards More Relevant Explicatory Waveband Variables

by Eric Ariel L. Salas
Department of Fish, Wildlife and Conservation Ecology, New Mexico State University, Las Cruces, NM 88003, USA

Abstract
Although the water absorption feature (WAF) at 970 nm is not very well-defined, it may be used alongside other indices to estimate the canopy water content. The individual performance of a number of existing vegetation water content (VWC) indices against the WAF is assessed using linear regression model. We developed a new Combined Vegetation Water Index (CVWI) by merging indices to boost the weak absorption feature. CVWI showed a promise in assessing the vegetation water status derived from the 970 nm absorption wavelength. CVWI was able to differentiate two groups of dataset when regressed against the absorption feature. CVWI could be seen as an easy and robust method for vegetation water content studies using hyperspectral field data.

How to cite
Salas, E. 2017. Vegetation Water Content Prediction: Towards More Relevant Explicatory Waveband Variables. Preprints 2017, 2017010001 (doi: 10.20944/preprints201701.0001.v1).

Download the full paper here or the PDF here.

Leave a Reply

Your email address will not be published. Required fields are marked *

nine − 1 =

This site uses Akismet to reduce spam. Learn how your comment data is processed.