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Abstract 
Assessing vegetation water content (VWC) from hyperspectral reflectance 
dataset poses two foremost questions: what specific wavebands of the SWIR 
offer a good retrieval and what modeling methods have the best predictive 
ability.  In this paper, we explored the application of multivariate statistical 
techniques such as stepwise multiple linear regression (SMLR) and partial least 
square regression (PLSR) for vegetation water content prediction using the 
absorption features.  We also examined the recursive partitioning model of the 
dataset to illustrate relationships of splits among waveband predictors.  
Previously known wavelength features around 970 nm and 900 nm were leading 
predictors of water content.  In the absence of actual field VWC data, the 
absorption area feature at 970 nm was computed and used to model other 
explicatory waveband variables that may boost the prediction.  The results of 
this exploratory waveband-predictor study highlighted other essential locations 
around 956 nm, 922 nm, 976 nm, 935 nm, and 915 nm.  The SMLR disqualified 
highly correlated bands that augment relatively little in the VWC prediction 
capability of the model.  PLSR presented the 900 nm, 922 nm, and the 970 nm 
peaks affirming the results of the SMLR.  The PLSR is the favored technique 
with RMSEcv = 0.002 (r2=0.88) for the cross-validation, lower than the SMLR 
(RMSEcv = 0.023).  Recursive partitioning method showed the 956 nm, 
surprisingly with the highest logworth among predictors.  The overall r2 after 
partitioning, when actual and predicted VWC were plotted against each other 
was a fair 0.59.  This value is comparable with other empirical indices we 
previously analyzed. Recursive partitioning is a highly adaptive technique and 
care must be taken in the interpretation of results. 
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Introduction 
 
Reflectance spectra could present many possible water indices because of the 
existence of several water absorption features in the NIR and far-IR region of 
the spectrum (Serrano et al. 2000).  Wavelength locations for water absorption 
features can be found at approximately 970, 1200, 1450, and 1950 nm in a 
vegetation spectrum (Carter, 1991; Kokaly and Clark, 1999; Tian et al., 2001; 
and Claudio et al., 2006). 
 
Specific spectral positions have been used by different authors to foresee 
interesting possibilities of deriving information on canopy water contents: the 
~1550 – 1750 nm (Tucker, 1980); 980 nm (Goetz et al., 1990); 960 nm (Roberts 
et al., 1997); 760 nm, 970 nm, 1190 nm, 1450 nm, and 1940 nm (Kokaly and 
Clark, 1999); 1430 nm and 1950 nm (Penuelas and Inoue, 1999); 970 nm and 
1240 nm (Serrano et al, 2000); 970 nm, 1200 nm, and 1530 nm (Sims and 
Gamon, 2003); 820 nm and 1600 nm (Hunt and Rock, 1989 and Riggs and 
Running, 1991).  The wavelength at 970 nm has been widely used, usually in 
combination of other wavelengths, in the estimation of vegetation water content.   
 
Vegetation water indices typically are derived using ratio and difference of 
wavebands.  A list of indices for canopy VWC estimation is shown in appendix 
1. Still, researchers like Sims and Gamon (2003) have searched for the optimal 
mathematical statement and wavelengths that would tender a good measure of 
the water vegetation capacity. 
 
As early as the 90s, Goetz et al. (1990) used the Spectral Curve Fitting technique 
to derive subtle information from vegetation spectra for biochemical 
constituents such as lignin.  Linear least squares spectrum matching technique 
was employed by Gao and Goetz (1995) to retrieve equivalent water thickness 
(EWT) using AVIRIS imagery.   A number of studies used empirical approaches 
that integrate spectral information of spectral wavelengths in assessing 
vegetation biophysical and biochemical properties (Kokaly and Clark, 1999; 
Lefsky et al., 2001; De Jong et al., 2003; Cho et al., 2007).   Examples of 
empirical approaches are the univariate and multivariate regression models.  In 
view of multivariate regression, partial least squares regression (PLSR) and 
stepwise multiple linear regression (SMLR) can be utilized to find the 
relationship between a target parameter (in this case the VWC absorption) and 
the spectral reflectance (in this case the hyperspectral reflectance data).   SMLR 
serves as an exploratory tool to single out the potentially important predictors.  
If two independent variables are highly correlated, only one will end up in the 
model in a stepwise analysis, even though either one can be considered as a 
predictor.  As one of our objectives, we examined the application of SMLR to 
quantify VWC at canopy level hyperspectral reflectance.  PLSR, like the 
SMLR, can be used as an exploratory analysis tool to select appropriate 
predictors and to spot outliers before classical linear regression.  However, 
PLSR is perhaps the least limiting of the several multivariate extensions of the 
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multiple linear regression models.   PLSR accommodates all available spectral 
wavelengths simultaneously and studies such as Cho et al. (2007) and Nguyen 
and Lee (2006) used the potentials of the technique for estimating biophysical 
and biochemical properties of vegetation.   
 
Infrared spectroscopy placed side by side with partial least squares and stepwise 
multiple linear regressions in predicting VWC using high spectral resolution 
data is not widely entertained by the scientific world so far.   To defeat the curse 
of dataset dimensionality, one has to capture general trends in the dataset while 
eliminating extraneous information.  This is done by employing predictive 
modeling techniques – a simple decision rule, for instance.  The technique 
partitions the hyperspectral dataset into several cases based on the target VWC 
values. Groups unrelated to the target are considered less worth.  Recursive 
partitioning, also known as CART, is used in this study to perform the data 
splitting, and then we interpreted results. 
 
The number of times the recursive partitioning (splitting) process repeats can be 
thought of as a tuning parameter for the model. Each iteration subdivides the 
input dataset further and fosters training data accuracy.  The model could give 
high degree of accuracy but also has the tendency to overfit (Vayssieres et al., 
2000).  To solve the over fitting tendency, a cross-validation procedure can be 
applied.   
 
Hyperspectral dataset obtained by a field spectrometer include hundreds of 
narrow wavelengths that may not all be necessary for the characterization of 
VWC.  Hence, the second objective of this study is to use recursive partitioning 
to know whether and to what extent hyperspectral wavebands may function as 
predictors of vegetation water content.   We will note that the term VWC from 
hereon, in this paper, will mean the quantity of water content representing the 
area at the absorption feature around the 970 nm band. 
 
Materials and Methods 
 
Study Area Overview 
The Sandhills of Nebraska is a unique ecosystem that covers 50,176 square 
kilometers of grass-covered sand dunes and 5,260 square kilometers of wetlands 
(Turner and Rundquist, 1980).  The relationship between the land, water, 
wildlife, and people is what makes the Sandhills a truly unique place.   
 
 
 
Spectral Measurements 
The field dataset consisted of non-destructive spectral measurements that were 
measured under clear skies from vegetation and soil plots with 20 stations each 
using the Ocean Optics USB2000 spectrometer that covers the 350 nm to the 
1025 nm wavelength range. The spectrometer provides resolution to 0.35 nm 
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full width at half maximum (FWHM).  Full details of the equipment can be 
found at the Ocean Optics website (oceanoptics.com).  For this study, plots 2, 
3, 6 and 8 were utilized.  Perennial grasses and numerous weeds dominated the 
plots.   In each sampling station, four readings were taken representing the 
cardinal directions. To prevent shadow directly over the samples, the operator 
was made to stand with the sun in front. 
 
Spectra Pre-processing 
All field spectra went through filtering to attenuate sensor noise. A moving 
average with a frame size of 7 points was applied.  This corresponds to about 2 
nm difference (VIS) and less than 2 nm (NIR) between beginning and ending 
points.   The smoothing procedure on the high spectral resolution data did not 
only attenuate noise, but also define the structure (shape) of the absorption 
features. 
 
The 970 nm Absorption Feature 
The absorption feature at the water absorption wavelength, 970 nm, was derived 
using the SAMS software (Spectral Analysis and Management System 
developed by the Center for Spatial Technologies and Remote Sensing at the 
University of California, Davis).   SAMS calculates areas based on the 
continuum removed principle.  The absorption feature equation (equation 1) is 
the ratio between the area under the function (in a specified spectrum interval) 
and the area under the straight line connecting the maxima.  

 
     
          [1] 
 
 
where: 

a = the absorption feature 
Au = area under the curve 
Ac = area under the continuum line 

 
The feature around 970 nm is the only absorption feature for liquid water 
available for the hyperspectral field dataset. 
 
 
Regression Models 
 
Three approaches were seen to help model the relationship between the 
hyperspectral waveband predictors and the VWC: statistical multivariate 
techniques such as Stepwise Multiple Linear Regression and Partial Least 
Squares Regression, and the Recursive Partitioning model.  No averaging per 
fraction of nanometer difference in bandwidth was made to the hyperspectral 
dataset to ascertain that each spectral band becomes part of the predictor set.    
 

Ac
Aua −=1
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Stepwise Multiple Linear Regression 
The SMLR was used to evaluate the relevance of each wavelength on the 
estimation of the vegetation water content at 970 nm.  Stepwise selection 
employs the predictor variable selection of sequentially removing variables that 
do not meet entry and removal criteria. 
  
The exclusion of most of the predictor variables from the model is due to high 
inter-correlation among them.  High inter-correlation or multicollinearity 
among variables could introduce redundancy into the regression equation 
according to Dunagan et al. 2007.   In this study, the SMLR looks into the 
tolerance (equation 2) of each variable; other researchers use the inverse of 
tolerance, which is the VIF or the variance inflation factor.  A tolerance that is 
close to 0 means there is high multicollinearity of that variable with other 
independents and the beta coefficients will be unstable. 
 
         [2] 
 
where iR 2  is the coefficient of determination of the regression that is produced 
when the ith narrow spectral predictor band is regressed against the other 
predictor bands.  The SMLR was applied to the hyperspectral field data between 
wavelengths 700 nm to 990 nm, 928 wavebands in total.   
 
Partial Least Squares Regression 
The Partial Least Squares Regression is probably the least restrictive of the 
known multiple linear regression models.  This flexibility allows PLSR to be 
used in situations where the use of traditional multivariate methods is limited, 
such as when there are fewer observations than predictor variables. 
Furthermore, PLSR can be used as an exploratory analysis tool to interpret 
patterns of scores and loadings of the variables; to select suitable predictor 
variables (how much of the wavelength influence the VWC).  Partial least 
squares regression has been used in various ways especially when a large 
number of predictors are involved. 
 
 
For prediction, PLSR uses equation 3 below:     
          [3] 
 
 
where the y is the observed variable (VWC), x is spectral intensity, and b is beta 
coefficient.  The b-coefficients are estimated from the observed y and PLSR 
scores for the optimal number of PLSR factors.  The coefficients contain the 
spectral information necessary in steering the PLSR model.  Each individual 
value of the coefficient is important in elucidating the important variables, 
which spectral intensity is contributing to the modeling of the configuration of 
the VWC.  
 

exbxbbVWC kk ++++= ...110

)1( 2
iRtolerance −=
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CART or Recursive partitioning 
 
Recursive partitioning is a nonparametric technique that produces a tree of 
decision rules in which subjects are assigned to mutually exclusive subgroups 
according to a set of predictor variables creating a tree of partitions or splits.  
This technique is widely connected with the acronym CART (Classification and 
Regression Trees) as popularized by Breinam et al. (1984).  In-depth 
examination of CART results may provide an alternative method to logistic 
regression for the selection of matching variables.  Variable importance ranking 
(Van der Laan, 2006) is another attractive feature offered by recursive 
partitioning.  Other advantages of the recursive partitioning include: good for 
exploring relationships without having a good prior model, handles large 
problems easily, and results are very interpretable.  
 
The CART model partitions the space of the waveband variables into regions 
such that the variation in VWC within the same region is relatively small. The 
analysis produces two independent partitions of the space of waveband 
variables.  The recursive partitioning algorithm works by allowing for all 
possible splits on all potential explanatory variables.   
 
Recursive partitioning picks as the first split the one that does the best job of 
isolating distinct groups of values: low response values from high response 
values.  Whichever is to be split first depends upon the worth of a partition 
(logworth) – the highest worth is selected first and the data is appropriately 
partitioned.  
 
The logworth index in each parent node is a significance measure of the 
difference in mean values for the observations in each child node with regards 
to the VWC variable. Higher logworth means higher significant result, when it 
measures how well the input variable predicts the target values.  Logworth is 
written in the form of − log 10 (p), where p is the adjusted probability of the 
observed data under the hypothesis of the means being equal. The adjusted p-
value takes into account the number of different ways splits can occur. It is fair 
compared to the unadjusted p-value and to the Bonferroni p-value (Sall, 2002).   
 
The model reapplies the same procedure recursively, further splitting the sub-
groups. Proceeding in this fashion, it generates a regression tree. Eventually, the 
realization of certain stopping rules terminates the process and the tree reaches 
its terminal node and the maximum number of split leaves.  
 
Cross-validation is accomplished using the k-fold.  To create a K-fold partition 
of the dataset, for each of K experiments, K-1 folds is used for training and the 
remaining one for testing.  The advantage of this type of cross-validation over 
the hold-out method is that all the samples in the dataset are eventually used for 
both training and testing. 
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Results  
 
Stepwise Multiple Linear Regression  
Table 1 displays the statistical results of the eleven models from the SMLR.  
Note that we considered every possible decimal placement of the predictors to 
give us a factual impression of the predictive potential of the model. The 
predictor variable, 801.24 nm, having the largest correlation with the criterion 
variable was entered into the equation first (model 1). Depending on the 
contribution of each predictor to the VWC, the remaining 927 variables entered 
into the equation one at a time.  Only nine met the entry and removal criteria 
following the input of all waveband predictors.  Model 11 selected the best set 
of predictor variables into the regression equation.  The final model consisted 
of seven specific waveband predictors: 970.53 nm, 956.26 nm, 900.1 nm, 
922.77 nm, 976.3 nm, 935.02 nm, and 915.56 nm.  These predictor bands can 
be generalized to its closest nanometer bands: 970 nm, 956 nm, 900 nm, 922 
nm, 976 nm, 935 nm, and 915 nm when used further in the analysis.  
 
The model with the highest r2 value was used for the cross-validation process.  
The calibration procedure utilized another set of data that was purposely left out 
to cross-validate findings. Cross-validated predictions are shown in Table 2 
along with the statistics previously computed for the combined vegetation water 
index (CVWI).  The CVWI returned the lesser RMSEcv than the SMLR for the 
tested vegetation samples.   To test the sensitivity of the SMLR to presence of 
soil spectra, a separate cross-validation was conducted using all reflectance 
samples.  The SMLR prediction showed insensitivity to presence of soil spectra, 
with the almost equivalent RMSEcv values in Table 2.  On the contrary, CVWI 
appeared to be susceptible to soil presence.  
 
Table 1: Stepwise Multiple Linear Regression statistical summary of the eleven models.   Model 
11 gives the final set of predictors: 970.53, 956.26, 900.1, 922.77, 976.3, 935.02, and 915.56.  
The unit of measurement for each value is nanometer. 
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Table 2: Cross-validation statistics showing the selected accuracy indicators.  Significance at 
0.01 alpha levels are shown in parenthesis. 
 

Index Pearson Correlation 
(first set) 

r2cv 
(first set) 

RMSEcv 
(first set) 

RMSEcv 
(all samples) 

SMLR 0.47 (<0.01) 0.22 0.024 0.023 
CVWI 0.68 (<0.01) 0.46 0.013 0.171 

 
Absolute values of the partial correlations for variables not in the equation were 
also examined.  Figure 1 shows the values of the partial correlations for each 
predictor band.  Spikes were associated with the best set of predictor variables 
model 11 resulted into.  Significant positive correlations were observed for 
970.53 nm, 900.1 nm, and 976.3 nm.   
 
Partial Least Squares Regression  
The relationship between the VWC absorption values and the set of 
hyperspectral reflectance data from 700 nm to 990 nm were modeled using the 
PLSR.   Cross-validation outputs using the same dataset as the SMLR resulted 
in r2cv = 0.89. Figure 2 shows a plot of the predicted against the actual VWC. 
 
The optimum number of latent factors in the PLSR model preventing over-
fitting was based on the cross-validated RMSE.  The analysis revealed seven 
factors in the final model – the model with the best prediction RMSE (RMSE = 
0.40).   While seven factors were found to be optimal for the prediction of VWC, 
the first five were sufficient enough to account for more than 85% of the 
explained variance. 

Model r r2 Std. Error of the Estimate 

1 0.396 0.157 0.00779 
2 0.694 0.482 0.00614 
3 0.860 0.739 0.00439 
4 0.907 0.823 0.00364 
5 0.915 0.838 0.00350 
6 0.912 0.832 0.00354 
7 0.936 0.876 0.00307 
8 0.942 0.888 0.00293 
9 0.949 0.900 0.00279 
10 0.947 0.896 0.00282 
11 0.951 0.904 0.00273 
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To test the correlation between vegetation water content and spectral 
dependence of the PLSR model, mean values of the beta coefficients of the first 
five PLSR loadings for VWC were calculated.  The average values of beta 
coefficients of the optimal seven latent factors were also computed and 
presented as graphs in Figure 3. 
 

Dominant peaks in Figure 3 were consistent with the characteristics of the water 
absorption features of the vegetation spectra. Using five or seven factors did not 
make any difference at all to the emergence of peaks or the formation of the 
valleys.   
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Figure 2: Cross-validated prediction of VWC versus hyperspectral reflectance data in Partial 
Least Squares Regression model. 

Figure 1:  Partial correlation values plotted against the predictors for model 11.   
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The presence of the 900 nm (although not so defined), 922 nm, and the 970 nm 
peaks affirmed the results of the SMLR.  The three wavebands were part of the 
11 predictor variables used to model the VWC.  A notable observation was the 
appearance of the dips at wavelengths that were strongly deemed significant 
predictors for the SMLR model.  These wavelength dips were marked having 
indirect (inverse) effects to VWC than the wavelength peaks. 
 
Another peak at around 940 nm can also be seen, however, this wavelength was 
not indicated by the final model of SMLR that represented the best set of 
predictor variables.  Other models, on the contrary, had it.  The visible peaks 
and lows were considered the major inputs of the PLSR model.  
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Figure 3: Beta coefficient spectra of the average of the 5 loadings (a) and 7 loadings (b) for the 
VWC using PLSR. 
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Figure 4: Cross-validated prediction of VWC versus hyperspectral reflectance data in Partial 
Least Squares Regression model with lesser sample size. 
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To determine whether the prediction of the VWC absorption values can be 
improved using a smaller calibration set, another round of test was conducted.   
Prediction of these samples with 13 samples in the calibration set produced an 
r2= 0.88 (Figure 4), slightly less than the r2= 0.89 obtained using 928 samples.  
This demonstrated that even when considering a small number of samples, the 
calibration model could give reasonable results and could be robust in predicting 
new VWC unknowns. The RMSEcv of this new prediction was also lower at 
0.002.  The optimal number of latent factors for this PLSR model was 2.  Figure 
5 shows the dominant peaks that are also visible in Figure 3, although it tended 
to be flat around the 900 nm.   

 
Recursive partitioning regression  
The factor columns (Xs) we used for this research is continuous.  The recursive 
partitioning resulted into a maximal tree with thirteen leaves.  Among the eight 
input predictors that maximized the information content (970.53 nm, 956.26 
nm, 900.1 nm, 922.77 nm, 976.3 nm, 935.02 nm, 915.56 nm, and 940.06 nm), 
the 956.26 nm surprisingly came out the first input for partitioning the available 
data, having the highest logworth among predictors -- the best split for an input 
is the split that yields the highest logworth. 
 
The second split comprised the 900.1 nm, an indication of its importance as a 
partitioning factor.  Interestingly enough, a combination of 956.26 < 15.70 and 

Figure 5: Beta coefficient spectra of the average of the 2 loadings (a) and 6 loadings (b) for the 
VWC using PLSR. 
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900.1 >= 20.99 resulted already into nine samples that could not be further split 
(Table 5) and with a very high mean VWC (0.068).  The conditional values of 
the two wavelengths were understood to produce a larger difference of spectral 
reflectance between the two.        
 
Lower mean values of VWC absorptions were spotted at the opposite side (left) 
of the decision tree. Splitting and increasing the nodes widened the tree further 
right with larger VWC values detected.  As an illustration, a sample pruned tree 
with only seven leaves is shown in Figure 6.  The figure shows the logworth as 
the tree is pruned further down.  Manifestation of the variable importance 
through parent-child nodes was evident. Nonetheless, whether the number of 
leaves is seven or maximum thirteen, the 900.1 nm waveband was indicated as 
the next essential predictor of water content, regardless of the quantity of the 
VWC absorption.   
 
The other water band, 970.53 nm, appeared one level down from the 900.1 nm 
as partitioning continued, ending at split 11.  Something noteworthy to mention 
about the 970.53 nm was its emergence on the tree that was restricted only to 
the right end where larger VWC were identified.  This illustrated a charming 
merging of the 900.1 nm and 970.53 nm: the former being the second 
partitioning factor, then further partitioned by 970.53 nm, in order to uncover 
larger values of VWC.  A neighboring 976.3 nm also appeared on samples with 
high VWC.   
 
The least contribution came from the 922.77 nm.  This predictor input did not 
produce meaningful trees and may be eliminated.  The same wavelength was 
weighted less (Table 4) in the Stepwise Multiple Linear Regression procedure 
(coefficient = -0.005).   Table 4 shows how each predictor ranked between two 
statistical models. Apart from the 922.77 nm, the 915.56 also poorly ranked.     
 
The 940.06 nm band appeared in the recursive partitioning but not in the SMLR.   
 
 
Table 4: Ranking or importance of the predictors based on the SMLR and recursive partitioning 
results. 

Waveband Predictor 
(nm) 

SMLR Rank Based on 
Coefficients 

Recursive Partitioning 
Tree Level Location 

956.26 1 1 
900.10 1 2 
935.02 1 4 
970.53 2 3 
976.30 3 4 
915.56 4 3 
922.77 5 5 
940.06 NA 3 
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The 13-leaf tree demonstrated the opportunity that predictor-wavebands 956.26 
nm, 900.1 nm, and 970.53 nm could be the three relatively strong predictors of 
VWC.  In fact, the logworth on the right side of the tree at first split showed a 
very high measure of the worth of the split (logworth = 3.06) compared to the 
other end.  In other words, the bands belong to the best inputs with the best split. 
 
K-fold cross-validation r2 showed a low value of 0.40.  The overall r2 after 
partitioning, when actual and predicted VWC were plotted against each other 
(Figure 7) was a fair 0.59.  The cross-validation result value is comparable with 
other empirical indices previously analyzed.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Discussions 
 
Vegetation water content prediction using spectral feature as basis for the 
quantity of canopy water, such as the absorption area around the 970 nm, can 
be considered as an optional method, particularly on exploratory analysis when 
there is data deficiency.  The SMLR, PLSR and the recursive partitioning 
(CART) were three of the methods we tested to further explore hyperspectral 
wavebands in a vegetation spectra that are central to picking wavelengths for 
future VWC studies. 
 
The SMLR was implemented to a specified range of the hyperspectral field 
dataset covering the 700 nm to 990 nm and producing a total of 928 wavebands.  
When we discarded wavelengths in the visible range of the spectrum, there was 
efficiency and ease of computations.  Also, the absence of water absorption 
feature present within the visible range, eliminating wavebands was helpful 
rather than impractical.  
 
The SMLR was able to disqualify highly correlated bands that were present in 
the dataset.  Eliminated bands had tolerance values very close to zero after 
inspection.  Adding highly correlated bands augments relatively little in the 
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Figure 7: Plot of actual versus predicted VWC values showing how well is the goodness of fit. 
The abscissa values are the means predicted for each leaf. 
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prediction capability of the model.  This reinforced the initial perception that no 
averaging is necessary within bands of almost the same wavelengths, e.g. 900.1 
nm, 900.41 nm, and 900.71 nm.  The SMLR showed the wavebands that have 
positive or direct relationship to the VWC through the positive sign of the beta 
coefficients.   
 
PLSR substantiated the results of the SMLR.  Important wavebands were 
present and were better explained by the scores and loadings plot.  The method 
identified another wavelength for vegetation water prediction, at the 940 nm.   
 
What recursive partitioning regression did to the hyperspectral data was split 
the spectral intensities using a cutting value and used it to partition the 
waveband. The recursive partitioning was capable in maximizing the difference 
in the responses between the two branches of the partition that resulted in 
wavebands defining particular levels of VWC.   
 
However, there is a word of caution in the interpretation of the results of the 
recursive partitioning.  The exploratory nature of subgroup analysis could 
possible create high optimism in the highly adaptive procedure in recursive 
partitioning.  Being exploratory, crucial deductions should be reserved and extra 
steps be taken in interpreting the values resulting from the splitting method.  The 
interactive characteristics of this nonparametric technique could confer 
optimistic findings most of the time, which could generally please researchers.  
Thus, a comparative study would be worthwhile to test the robustness of the 
partitioning results.   
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    Figure 6: Pruned decision tree to predict vegetation water content from hyperspectral reflectance data using eight input predictors.
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Conclusions 
 
The determination of the number of significant waveband predictors is essential 
for the application of statistical VWC models. This can be done even in the 
absence of actual water content dataset and by using known areas of water 
absorptions.  In this research, we have focused on a major piece of the pie by 
presenting the matching waveband variables that were recognized to describe 
significantly the variations of VWC derived from the hyperspectral data.  We 
used two multivariate methods, Partial Least Squares Regression and Stepwise 
Multiple Linear Regression, to uncover hidden wavebands that may help predict 
or estimate the canopy vegetation water content.  The goal was fulfilled with 
the utilization of the spectral feature at the 970 nm absorption. Both statistical 
analyses showed the possibility of modeling the interaction between multiple 
wavelengths of vegetation spectra and VWC by capitalizing on the importance 
of specific bands and eliminating band redundancy.    
 
The SMLR pinpointed the best band combination from the NIR region that 
could administer a strong contribution to the prediction and estimation of VWC.  
The PLSR affirmed the results of the SMLR by underscoring dominant peaks 
that were consistent with the characteristics of the water absorption features of 
vegetation spectra.  The laurels of known absorption features such as 900 nm 
and 970 nm may have been given much attention by academicians due to their 
visibility on spectral curves that other wavebands, unfortunately, have been 
banked.  From this study involving 80 samples and 928 wavebands, we detected 
unforeseen band predictors that could better boost VWC predictions only 
commonly predicted or estimated by the 900 nm and 970 nm. 
 
The SMLR disclosed further the relationship of the wavelength to the VWC by 
the sign of the beta coefficients.   While the models resulting from the SMLR 
indicated about seven best predictors, the PLSR needed only five factors to 
sufficient account for more than 85% of the explained variance. 
 
PLSR is favored as a predictive technique over SMLR since the calibration 
model could give satisfactory results even at lesser number of samples.   
Compared to the previously investigated VWC indices (WBI, NDWI, NDVI), 
the multivariate statistical methods appeared to be more powerful, except for 
the CVWI, based on the RMSEcv accounts.  The use of more than three bands 
or latent factors in the prognosis process has showed relatively better results 
than just adopting two, which existing VWC indices employed. 
 
This study also applied a modeling scheme to acquire more understanding of 
the narrow band predictors and their correlations to the VWC.  Recursive 
partitioning method was seen ideally suited to the role of initial predictive 
modeling methodology.   The tree produced using the multidimensional dataset 
set boundaries that partitioned the VWC into several wavelength band classes 
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or leaves.  However, results of this study would not suggest the optimum tree 
partitioning.   
 
The manifestation of the importance of few particular wavebands for VWC 
prediction was seen on our results; nevertheless, any tree branch produced by 
recursive partitioning may give the best grouping of samples or the best 
predictors.  Also regression trees may have undesirable outcomes when applied 
to continuous variables.   According to Clark and Pregibon (1992), regression 
trees are best when using categorical variables as predictors. 
 
We want to highlight the point that the results of the recursive partitioning did 
not insinuate the level of relationships between predictors and water content 
values.  The question of how strong the relationship cannot be deduced.  The 
decision tree only displayed the interpretable actuality that wavelength locations 
were affected by water contents.   
 
It is hoped that this paper will be instrumental in propagating more ideas in the 
direction of multivariate calibration model analyses for VWC.  By utilizing the 
right wavebands and the right multivariate and modeling technique in a 
hyperspectral data with tremendous amount of narrow spectral bands, the 
biophysical characteristics of vegetation such as water content, can be salvaged 
with sufficient accuracy. 
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Appendix 1: Spectral indices that have been derived and used for estimation of vegetation 
water content (VWC) based on ratio, or simple mathematical formula of reflectance of two or 
more wavelengths. 
 
WBI = Water Band Index; NDWI = Normalized Difference Water Index; EWT = Equivalent Water 
Thickness; WT = Water Thickness; MSI = Moisture Stress Index; NDII = Normalized Difference 
Infrared Index; PWI = Plant Water Index; SRWI = Simple Ratio Water Index; SR = Simple Ratio; 
NDVI = Normalized Difference Vegetation Index; CSI = Canopy Structure Index; GVMI = Global 
Vegetation Moisture Index; RDI = Relative Depth Index; LWCI = Leaf Water Content Index; CR= 
Continuum Removal 
 
VW 

Index 
Wavelength 
Used (nm) 

Formulation /Equation Application Reference 

WBI 
 

895, 972 = R895/R972 AVIRIS imagery Serrano et al. 
(2000) 

900, 970 = R900/R970 Unispec (350-1100nm) and 
GER 2600 (350-2500nm) 

Sims and Gamon 
(2003) 

900, 970 = R900/R970 Field Spectrometer Peñuelas et al. 
(1997) 

NDWI 857, 1241 = (R857-R1241)/(R857+R1241) AVIRIS imagery Serrano et al. 
(2000) 

860, 1240 = (R860-R1240)/(R860+R1240) MODIS Zarco-Tejada et al. 
(2003) 

EWT  Use R1400 through R2500 
 

Earliest Definition of EWT Knipling (1970) 

 Use R867 through R1049 AVIRIS imagery Serrano et al. 
(2000) 

 Use R920 through R1070 Unispec (350-1100nm) and 
GER 2600 (350-2500nm) 

Sims and Gamon 
(2003) 

1600 = -ln (1-a)/k 
where a = Rd1600-R1600, 
k = extension coefficient of leaf, d = dry 
state 

VIRIS spectrometer Hunt and Rock 
(1989) 

WT  Use R867 through R1088 AVIRIS imagery Serrano et al. 
(2000) 

MSI 819, 1599 = MIR/NIR 
= R1599/R819 

AVIRIS imagery Serrano et al. 
(2000) 

NDII 819, 1649 = (R819-R1649)/(R819+R1649) AVIRIS imagery Serrano et al. 
(2000) 

PWI 970, 900 = R970/R900 MODIS Zarco-Tejada et al. 
(2003) 

SRWI 858, 1240 = R858/R1240 MODIS Zarco-Tejada et al. 
(2003) 

SR 680, 800 = R800/R680 Unispec (350-1100nm) and 
GER 2600 (350-2500nm) 

Sims and Gamon 
(2003) 

NDVI 680, 800 = (R800-R680)/(R800+R680) 
 

Unispec (350-1100nm) and 
GER 2600 (350-2500nm) 

Sims and Gamon 
(2003) 

675, 895 = (R895-R675)/(R895+R675) AVIRIS imagery Serrano et al. 
(2000) 

680, 800 = (R800-R680)/(R800+R680) Field Spectrometer Peñuelas et al. 
(1997) 
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677, 793 = (R793-R677)/(R793+R677) AVIRIS imagery Roberts et al. 
(1997) 

CSI 680, 800, 
900, 970 

= 2sSR – sSR2 + sWI2 
where: sWI = (WI1180 – 1) / (WI1180 
– 1)max  
sSR = (SR680 – 1)/ (SR680 – 1)max  
WIxxx = R900/Rxxx 

Unispec (350-1100nm) and 
GER 2600 (350-2500nm) 

Sims and Gamon 
(2003) 

GVMI 780-890 and 
1580-1750 

[(NIR+0.1)-(SWIR+0.02)]/ 
[(NIR+0.1)+(SWIR+0.02)] 

SPOT-Vegetation Ceccato et al. 
(2002) 

RDI 1116, 
minimum 
between 
1120 and 
1250 

[(Rmax-Rmin)/Rmax] 
where: Rmax = reflectance value at 
1116nm; and Rmin = reflectance 
minimum between 1120 and 1250 nm 

GER IRIS MK 
spectroradiometer 

Rollin and Milton 
(1998) 

LWCI 820, 1600 {-ln[1-(R820-R1600)]}/ {-ln[1-(R820-
RFT1600)]} 
 
where: 
RFT1600 = reflectance factor at 1600 
nm at full turgor   

VIRIS spectrometer Hunt and Rock 
(1989) 

  Uses the RWC equation AIS imagery Riggs and Running 
(1991) 

CR Range 1650-
1850 

 FieldSpec –FR (350-
2500nm) 

Tian et al. (2001) 
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