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Abstract: Wetlands are invaluable ecosystems, offering essential services such as carbon sequestration, 
water purification, flood control and habitat for countless aquatic species. However, these critical 
environments are under increasing threat from factors like industrialization and agricultural expansion. 
In this research, we focused on small-sized wetlands, typically less than 10 acres in size, due to their 
unique ecological roles and groundwater recharge contributions. To effectively protect and manage 
these wetlands, precise mapping and monitoring are essential. To achieve this, we exploited the 
capabilities of Sentinel-2 imagery and employ a range of machine learning algorithms, including 
Random Forest (RF), Classification and Regression Tree (CART), Gradient Tree Boost (GTB), Naive 
Bayes (NB), k-nearest neighbors (KNN) and Support Vector Machine (SVM). Our evaluation used 
variables, such as spectral bands, indices and image texture. We also utilized Google Earth Engine 
(GEE) for streamlined data processing and visualization. We found that Random Forest (RF) and 
Gradient Tree Boost (GTB) outperformed other classifiers according to the performance evaluation. 
The Normalized Difference Water Index (NDWI) came out to be one of the important predictors in 
mapping wetlands. By exploring the synergistic potential of these algorithms, we aim to address 
existing gaps and develop an optimized approach for accurate small-sized wetland mapping. Our 
findings will be useful in understanding the value of small wetlands and their conservation in the face 
of environmental challenges. They will also lay the framework for future wetland research and 
practical uses. 
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1. Introduction 

Among important ecosystems, wetlands are unique. These ecosystems are useful for hydrological 
cycle, carbon sequestration, water purification, flood control and provide habitats for thousands of 
aquatic flora and fauna [1]. Wetlands are, however, threatened by industrialization and agricultural 
intensification [2]. In the USA, the main cause of wetland loss is the conversion to agricultural land 
use [3]. Globally, about 35% of wetlands have been lost between 1970 and 2015 [4]. 

Small-sized wetlands, the focus of our study, comprise a diverse array of ecologically and 
hydrologically significant ecosystems. Typically occupying an area of less than 10 acres (0.04 km2), 
these wetlands are situated within a variety of terrestrial and aquatic landscapes [5]. Hydrologically, 
these wetlands are noticeable by their remarkable ability to retain water over extended periods, 
particularly during wet seasons, thereby contributing substantially to local groundwater recharge [6]. 
From an ecological perspective, small-sized wetlands hold a fundamental role in supporting unique 
habitats for a diverse range of wetland-dependent species [7]. These types of wetlands usually have 
specific vegetation types, such as emergent aquatic plants and hydric soils, further setting them apart 
from the surrounding ecosystems [8].  

It is crucial to map and monitor wetlands for conservation and management strategies [9]. Remote 
sensing technology, including satellite imagery, has emerged as a valuable tool for mapping and 
monitoring wetlands at a regional and global scale [10,11]. The European Space Agency’s (ESA) 
Sentinel satellites, specifically Sentinel-2, have proven particularly useful in providing high-resolution 
optical and radar imagery to map wetlands. The multispectral Sentinel-2 imagery can identify 
vegetation and water bodies, while its high-resolution capabilities enable the detection and 
characterization of small-sized wetlands [12]. 

To enhance the precision and efficiency of wetland classification using Sentinel-2 imagery, there 
has been a growing interest in the application of machine learning (ML) algorithms. Machine learning 
is a subset of artificial intelligence and involves training algorithms to recognize patterns in data and 
subsequently classify new data based on these learned patterns. In the context of satellite imagery, ML 
algorithms offer the potential for automating the mapping process and accurately classifying various 
land cover types, including wetlands [13]. Among the ML algorithms, Random Forest (RF) and 
Classification and Regression Tree (CART) have emerged as prominent choices for mapping wetlands 
with Sentinel-2 images [14,15]. RF, for instance, leverages the combination of multiple decision trees 
to produce precise predictions through the aggregation of their outputs. Its capacity to handle complex 
and high-dimensional datasets, while also enabling the assessment of variable importance, positions 
RF as a robust tool for wetland mapping [16]. Similarly, CART constructs binary decision trees based 
on feature attributes, facilitating the accurate classification of wetland areas [17]. 

In addition to RF and CART, various other ML algorithms have found application in the mapping 
of small-sized wetlands using Sentinel-2 imagery. Among these, Gradient Tree Boost (GTB) stands out 
as an ensemble learning method, similar to RF, which combines multiple decision trees to enhance 
classification accuracy [18]. Naive Bayes (NB) is another notable algorithm, offering a probabilistic 
approach that assumes independence between features, and it has demonstrated successful outcomes in 
wetland mapping [19]. In a different manner, k-nearest neighbors (KNN), a non-parametric algorithm, 
distinguishes itself by classifying data points based on their proximity to known data points [20]. Further, 
the Support Vector Machine (SVM) also emerges as an effective ML tool, constructing hyperplanes to 
delineate distinct classes within the feature space [21]. 
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Several studies have been conducted regarding the effectiveness of these ML algorithms in 
wetland mapping tasks. For example, Mahdianpari et al. [22] and Waleed et al. [23] employed RF and 
CART algorithms with Sentinel-2 images to achieve high overall accuracies (>95%) in wetland 
classification. Li et al. [24] utilized GTB for wetland classification and reported improved accuracy 
compared to individual decision trees. Wu et al. [25] successfully applied NB and KNN algorithms in 
wetland mapping and highlighted its ability to handle complex classification tasks. Finally, Gemechu 
et al. [26] demonstrated the effectiveness of SVM algorithm in temporal wetland classification in 
Guangling County, China with accuracies ranging from 86% to 98.1%. 

To process and analyze the Sentinel-2 images using these ML classifiers, we take advantage of 
the capabilities of Google Earth Engine (GEE), a cloud-based platform that combines a vast archive 
of satellite imagery with geospatial analysis functions [27]. GEE provides a powerful computing 
infrastructure and pre-built functions for image analysis and enables efficient data processing and 
visualization. It offers access to Sentinel satellite imagery, including Sentinel-2 data and facilitates the 
integration of ML algorithms for wetland mapping [28,29]. GEE could overcome computational 
limitations and process various satellite imagery at the same time, which allows for the integration of 
multiple ML algorithms and the exploration of various input features for wetland classification [27]. 

Despite the advancements in ML algorithms and the utilization of Sentinel-2 imagery for wetland 
mapping, there is a research gap in the development of an integrated approach that combines multiple 
machine learning algorithms to improve the accuracy and efficiency of small-sized wetland 
classification. While studies have individually demonstrated the effectiveness of algorithms, especially 
RF, there is a need to explore the potential of other algorithms in a synergistic manner to enhance 
wetland mapping processes. Our specific objectives of this study include: 

1. Assessing the individual performance of RF, CART, GTB, NB, kNN and SVM classifiers in 
wetland classification using Sentinel-2 imagery. 
2. Evaluating the impact of different input variables, such as spectral bands from Sentinel-2 
images, spectral indices and image texture on the performance of each classifier. 
3. Mapping of the wetland areas using the best performing classifier. 
Our results would provide valuable insights into the development of an optimized and accurate 

wetland mapping approach. By exploring the synergistic potential of these algorithms and variables, 
our research aims to address existing gaps and develop an optimized approach for accurate small-sized 
wetland mapping. Such an approach would be helpful for other researchers, conservationists, land 
managers, policy-makers and environmental practitioners who are actively involved in the 
preservation and management of small-sized wetlands. Finally, our results would also address the gaps 
that exist in the National Wetlands Inventory (NWI) database. 

2. Materials and methods 

2.1. Study Area 

The study area includes a number of wetland systems, including floodplain woodlands, marshes, 
wet prairies, woodland pools and scrub-shrub wetlands. These small-sized wetlands are managed by 
Beaver Creek Wetlands Greenway (BWG) Community Land Trust. Located in Beavercreek, Ohio, 
USA, the wetlands are protected by the Ohio Environmental Protection Agency (OEPA) Clean Water 
Act. Due to the variety of flora and fauna species, school groups, birdwatchers and wildflower 
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enthusiasts frequent the wetlands. The Beaver Creek stream runs through the wetlands from north to 
south. The BWG boundary and the perimeter of our study area are depicted in Figure 1. According to 
the NLCD land use, most of the urban areas are in the east, while cultivated crops predominate in the 
west. Although wetland is one of the NLCD classes, due to their small sizes, they are not properly 
mapped out. 

 

Figure 1. The BWG study area is located in southwestern Ohio. 

2.2. General Methodology 

The methods for classifying wetlands using GEE and utilizing six classifiers involved several 
steps.  

1. Sentinel-2 images were retrieved and preprocessed using GEE. Relevant spectral bands and 
features were extracted from the images, capturing important information about wetland 
vegetation and water characteristics. 

2. The six machine learning classifiers, including RF, CART, GTB, NB, KNN and SVM, were 
implemented to classify the wetland areas. 

3. These classifiers were trained on the extracted spectral indices, image texture and spectral 
bands, leveraging the ability of the classifiers to recognize patterns and classify new data 
based on learned patterns.  



66 

AIMS Geosciences  Volume 10, Issue 1, 62–79. 

4. The performance of each classifier was assessed individually, evaluating their accuracy in 
wetland classification using Sentinel-2 imagery. 

5. The impact of different input variables on the classification performance of each approach 
was also evaluated by grouping them into four sets: Set A (spectral bands, spectral indices, 
image texture); set B (spectral bands, spectral indices); set C (spectral bands, image texture); 
set D (spectral bands). 

6. The accuracy of the multiple classifiers using the various set of variables was validated by 
splitting the sampling data into training and testing, providing insights into an optimized and 
accurate wetland mapping approach. 

2.3. Google Earth Engine (GEE) Platform and Sentinel-2 Images 

GEE (earthengine.google.com) is a cloud-based platform that provides researchers with a vast 
collection of satellite imagery and geospatial datasets [30]. It offers a comprehensive and diverse range 
of data sources, including the 10-meter spatial resolution Sentinel-2 which is essential for wetland 
mapping. The extensive GEE data archive, coupled with its efficient data storage and processing 
capabilities, allowed this research seamless access to the necessary image data for analysis. By 
utilizing the power of GEE, we retrieved and preprocessed the Sentinel-2 imagery from June 1 to 
October 31, 2022 (summer to fall seasons), extracted relevant spectral bands and features from the 
images and performed various data manipulations required for wetland classification. The use of GEE 
ensures a streamlined and efficient workflow, enabling us to leverage its vast data resources and 
advanced analysis capabilities for accurate wetland mapping. 

We utilized summer to fall images for wetland classification because this period captures crucial 
temporal variations in wetland vegetation dynamics and water presence. During this period, wetlands 
undergo distinct changes in vegetation phenology, water levels and land cover, which can provide 
valuable information for accurate classification. By analyzing imagery from June 1 to October 31, 
2022, we captured the seasonal transitions and phenological patterns necessary for distinguishing 
wetland classes and improved the overall accuracy of wetland mapping.  

2.4. Selected Classifiers RF, CART, GTB, NB, KNN and SVM  

We selected RF, CART, GTB, NB, KNN and SVM as our classifiers based on their demonstrated 
effectiveness in wetland classification using remote sensing data. Each classifier offers unique 
advantages and has been widely used in various land cover mapping studies. 

RF is an ensemble learning method that combines multiple decision trees to generate accurate 
predictions by aggregating their outputs [31]. It utilizes the concept of bagging and random feature 
selection to reduce overfitting and improve generalization. The RF algorithm combines the predictions 
of individual decision trees using a voting mechanism or averaging method, as shown in Equation 1: 

𝑦𝑅𝐹  ∑ 𝑦 𝑥 , 𝑤ℎ𝑒𝑟𝑒 𝑦 𝑥  𝜖 1,1       (1) 

where 𝑦𝑅𝐹 is the predicted class label for a given sample 𝑥, 𝑦 , 𝑥  is the predicted class label of the 
i-th decision tree and N is the total number of decision trees in the forest. 
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CART constructs binary decision trees based on feature attributes, enabling precise classification 
of wetland areas [32]. The splitting criterion used in CART is often based on Gini impurity or 
information gain, as shown in Equation 2: 

𝐺𝑖𝑛𝑖 𝑝 1  ∑ 𝑝𝑘        (2) 

where 𝑝𝑘 represents the proportion of samples in class k at a given node. CART recursively partitions 
the feature space based on the selected splitting criterion, forming a binary tree structure. 

GTB, like RF, is an ensemble learning method that combines multiple decision trees to improve 
classification accuracy [32]. GTB differs from RF in the way it constructs subsequent trees. The 
boosting process of GTB updates the weights of misclassified samples, allowing subsequent trees to 
focus on the previously misclassified samples. The final prediction of GTB is a weighted sum of 
predictions from all the trees, as shown in Equation 3: 

𝑦𝐺𝑇𝐵  ∑ 𝑣𝑦 𝑥 , 𝑤ℎ𝑒𝑟𝑒 𝑦 𝑥  𝜖 1,1      (3) 

where 𝑦𝐺𝑇𝐵 is the predicted class label for a given sample 𝑥, 𝑦 , 𝑥  is the predicted class label of the 
i-th decision tree, N is the total number of decision trees in the ensemble and v is the learning rate. 

NB is a probabilistic classifier that assumes independence between features and has been applied 
successfully in wetland mapping [33]. It estimates the conditional probability of a sample belonging 
to a particular class using Bayes' theorem. The predicted class label is determined by selecting the class 
with the highest probability, as shown in Equation 4: 

𝑦𝑁𝐵 𝑎𝑟𝑔𝑚𝑎𝑥 , ,..., 𝑃 𝑦 ∏ 𝑃 𝑥 |𝑦      (4) 

where 𝑦𝑁𝐵 is the predicted class label for a given sample, 𝑃 𝑦  is the prior probability of class y, 
𝑃 𝑦  is the conditional probability of feature 𝑥  given class y, n is the number of features and K is the 
total number of classes. 

KNN is a non-parametric algorithm that classifies data points based on their proximity to other 
known data points [34]. It assigns the class label based on the majority vote of its nearest neighbors. 
The class label of a sample is determined by Equation 5: 

𝑦𝐾𝑁𝑁 𝑚𝑜𝑑𝑒 𝑦 |𝑥  is one of the k nearest neighbors of x})    (5) 

where 𝑦𝐾𝑁𝑁 is the predicted class label for a given sample 𝑥 𝑦  is the class label of the i-th nearest 
neighbor and k is the number of nearest neighbors. 

SVM is a powerful algorithm that constructs a hyperplane to separate different classes in the 
feature space [35]. It aims to maximize the margin between the support vectors and the decision 
boundary. The class label of a sample is determined by the sign of the discriminant function, as shown 
in Equation 6: 

𝑦𝑆𝑉𝑀  𝑠𝑖𝑔𝑛 𝑓 𝑥          (6) 

where 𝑦𝑆𝑉𝑀 is the predicted class label for a given sample 𝑥, 𝑓 𝑥  is the discriminant function and 
the sign function determines the class label based on the sign of the discriminant function. 
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Using the strengths of these classifiers, we aim to improve the accuracy and efficiency of small 
wetland classification. 

2.5. Image Texture and Other Indices as Predictors 

We added image texture measures such as entropy, along with vegetation indices like NDVI and 
water indices like NDWI as they have crucial roles in wetland classification, as they can capture 
important spectral and textural characteristics of wetland environments. Entropy, as a measure of 
randomness or disorder within an image, provides valuable information about the spatial distribution 
and heterogeneity of land cover classes within a wetland area. Texture measures have been widely 
used in remote sensing studies for land cover classification and change detection [10,36]. 

NDVI is a widely applied vegetation index that quantifies the presence and vigor of vegetation 
by leveraging the contrast between near-infrared (NIR) and red reflectance. Wetlands typically exhibit 
distinct vegetation characteristics, and NDVI helps in differentiating wetland vegetation from other 
land cover types [14,37]. High NDVI values indicate dense vegetation cover, which is often associated 
with wetland areas due to their unique hydrological conditions and plant species composition. NDWI 
is a spectral index commonly used to identify water bodies. It exploits the contrast between the NIR 
and shortwave infrared (SWIR) bands to highlight the presence of water [21]. Wetlands are 
characterized by the presence of water, and the inclusion of NDWI as a variable helps in accurately 
delineating wetland boundaries and differentiating wetlands from non-wetland land cover classes [19]. 

By incorporating entropy with NDVI and NDWI, together with the Sentinel-2 bands (B2: blue; 
B3: green; B4: red; B5, B6, B7, B8: VNIR; B11, B12: SWIR) into the classification process, we 
effectively captured the heterogeneity of wetland environments, distinguish wetland vegetation from 
other land cover types and accurately identify water bodies within wetland areas. This comprehensive 
set of variables enhanced the discriminatory power of the classification algorithms and enhanced the 
accuracy of wetland mapping and monitoring studies. 

2.6. Sets of Variables to Assess the Impact of Each Predictor 

We ran the classifiers using four different sets of variables (A, B, C and D) to understand the 
impact of including different types of variables on the classification performance. 

1. Set A (spectral bands, spectral indices, image texture): This set includes a comprehensive 
range of variables, namely spectral bands, spectral indices (vegetation and water) and image texture. 
Spectral bands capture information about the reflectance properties of different land cover classes, 
while spectral indices, such as the NDVI and NDWI, provide insights into specific land cover 
characteristics like vegetation and water content. Image texture measures, such as entropy, describe 
the spatial arrangement and patterns within the imagery. By combining these variables, the 
classifiers can leverage a diverse set of information for improved discrimination and classification 
accuracy. 
2. Set B (spectral bands, spectral indices): This set focuses on combining spectral bands and 
spectral indices, excluding the image texture measures. It allows us to evaluate the contribution of 
spectral indices in enhancing the performance of the classifiers. Spectral indices, being derived 
from specific band combinations, provide valuable information about vegetation health, moisture 
content and other land cover characteristics. By including these indices alongside spectral bands, 
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the classifiers can utilize additional spectral information for more accurate classification. 
3. Set C (spectral bands, image texture): This set explores the impact of image texture measures 
when combined with spectral bands. Image texture measures capture information related to spatial 
patterns, such as the heterogeneity or smoothness of land cover classes. By incorporating image 
texture alongside spectral bands, the classifiers can consider textural characteristics as 
discriminative features, which may aid in distinguishing between different land cover types. 
4. Set D (spectral bands): This set serves as a baseline comparison where only spectral bands are 
used as input variables. By excluding spectral indices and image texture measures, the classifiers' 
performance can be assessed based solely on the spectral information captured by the satellite 
imagery. This set helps evaluate the extent to which additional variables (spectral indices and image 
texture) contribute to improving the classification accuracy compared to using spectral bands alone. 

2.7. Field Data and Accuracy Assessment 

We collected 60 points samples from the field (using GPS) and interpreted additional 20 samples 
from the high-resolution images using Google Earth. To assess the wetland mapping classification 
accuracy of the classifiers, we employed a data splitting approach to create training and testing datasets. 
We divided our dataset into 70% training set and 30% testing set. This division of dataset guarantees 
an unbiased assessment of the classifiers' accuracy by evaluating their ability to generalize to new data.  

During the training phase, the classifiers were trained using the labeled training dataset, where 
each pixel was assigned a known wetland class label. This process involved learning the underlying 
patterns and relationships between the spectral characteristics and wetland classes present in the 
training data. The trained classifiers were then applied to the testing dataset, where the class labels 
were withheld, and the classifiers' predictions were compared against the true class labels to evaluate 
their accuracy. 

We assessed the accuracy using established metrics such as overall accuracy (OA) and kappa 
coefficient. These metrics provide quantitative measures of the classifier performance in correctly 
identifying wetland classes and assessing the agreement between the predicted and reference class 
labels [38]. By utilizing the training and testing data splitting approach, we evaluated the accuracy of 
the RF, CART, GTB, NB, KNN and SVM classifiers and compared their mapping performance. 

3. Results 

3.1. Performance of the Six Classifiers 

We ran the classifiers using four different sets. GTB demonstrated high overall training and 
validation accuracies (from 0.94 to 0.97), indicating good classification performance (Table 1). These 
numbers suggested a substantial level of agreement between the predicted and reference classifications. 
The RF classifier exhibited equally high overall training and validation accuracies, ranging from 0.93 
to 0.98, and the kappa coefficients ranging from 0.97 to 0.98. 

The SVM showed relatively lower overall training and validation accuracies, ranging from 0.90 
to 0.92, while kappa coefficients, ranging from 0.86 to 0.91. CART demonstrated high overall training 
accuracy (0.91 to 0.95), with kappa coefficients ranging from 0.92 to 0.95. KNN showed lower overall 
training and validation accuracies, both consistently at 0.67. The kappa coefficient was also low at 



70 

AIMS Geosciences  Volume 10, Issue 1, 62–79. 

0.48. Finally, NB exhibited moderate overall training accuracy, ranging from 0.72 to 0.75. The 
performance in terms of kappa coefficient ranged from 0.72 to 0.73.  

Based on the provided results, the RF and GTB classifiers outperformed the other classifiers in 
terms of OA and kappa coefficients. These two classifiers demonstrated higher accuracy and agreement 
with the reference classifications, indicating their effectiveness in mapping the LCLU/wetland classes. 
In the end, we used the RF and GTB classifiers as the final models for mapping the wetlands.  

Table 1. Overall training accuracy/validation accuracy/kappa of the six ML classifiers in 
mapping the LCLU classes. A= spectral bands, spectral indices, image texture; B = spectral 
bands, spectral indices; C = spectral bands, image texture; and D = spectral bands. 

Classifier A B C D 

CART 0.95/0.91/0.95 0.91/0.90/0.92 0.90/0.90/0.92 0.91/0.90/0.92 

RF 0.98/0.94/0.98 0.98/0.93/0.98 0.98/0.93/0.97 0.97/0.92/0.97 

SVM 0.92/0.91/0.86 0.92/0.90/0.86 0.91/0.90/0.86 0.91/0.90/0.86 

GTB 0.97/0.94 0.97/0.93 0.97/0.93 0.97/0.93 

KNN 0.67/0.67/0.48 0.67/0.66/0.48 0.67/0.65/0.48 0.67/0.67/0.48 

NB 0.75/0.73 0.74/0.73 0.75/0.72 0.72/0.73 

When we evaluated the efficacy of the classifiers in mapping wetlands against all other classes 
(that is, excluding the wetland class), the results indicated varying levels of relative OA (Table 2). 
Among the classifiers tested, RF and GTB exhibited the highest relative OA values of 0.93, suggesting 
their effectiveness in accurately mapping wetlands against the combined class. Both RF and GTB 
outperformed other classifiers in correctly classifying the samples. 

Table 2. Overall training accuracy/validation accuracy/kappa of the six ML classifiers in 
mapping wetlands against all other classes. A= spectral bands, spectral indices, image 
texture; B = spectral bands, spectral indices; C = spectral bands, image texture; and D = 
spectral bands. 

Classifier Relative Overall Accuracy (Wetlands) 

CART 0.90 

RF 0.93 

SVM 0.90 

GTB 0.93 

KNN 0.66 

NB 0.73 

CART and SVM achieved a relative OA of 0.90, indicating similar performance in accurately 
classifying the wetlands against the combined class. Although CART and SVM performed slightly 
lower than RF and GTB, they demonstrated good accuracy. In contrast, KNN exhibited a lower relative 
OA of 0.66, indicating a comparatively weaker performance in correctly classifying the wetlands. This 
suggests that KNN may struggle to distinguish wetlands from other land cover types effectively. NB 
achieved a moderate relative OA of 0.73, indicating its moderate performance. While NB performed 
better than KNN, it fell behind RF, GTB, CART and SVM in accuracy. 
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Overall, the results highlighted the superior performance of RF and GTB classifiers in accurately 
mapping the wetlands, suggesting their suitability for distinguishing and mapping wetlands. CART 
and SVM classifiers also exhibited good accuracy, while KNN showed relatively weaker performance, 
and NB achieved moderate accuracy.  

3.2. Ranking the Importance of the Variables 

We evaluated the importance of specific variables in the classification when using only two 
classes (wetlands vs others) (Table 3). Across the different variable sets (A, B, C and D), certain 
variables consistently emerged as significant contributors to the classification process. In variable set 
A, which includes spectral bands, spectral indices and image texture, B4 (Red spectral band), B11 
(SWIR spectral band) and NDVI (spectral index) were identified as the most important variables. 
Similarly, in variable set B (spectral bands and spectral indices), B11, B8, B5 and B2 (all spectral 
bands) played crucial roles in distinguishing between the two classes. Variable set C (spectral bands 
and image texture) further emphasized the significance of B11, B8, B5, B2 and B12 (spectral bands) 
in accurate classification. Finally, variable set D (spectral bands) confirmed the importance of B11, B8, 
B3, B2, B4 and B5 (all spectral bands) for effective discrimination between the two classes. Among 
all variables, entropy is absent from the list of important variables, suggesting that it may have had 
limited discriminatory power in the classification. Overall, the consistent ranking of these variables 
underscores their relevance in accurately classifying the land cover classes under consideration, 
emphasizing the value of specific spectral bands and spectral indices, such as NDVI, in the 
classification process. 

Table 3. Important variables in the classification. A= spectral bands, spectral indices, 
image texture; B = spectral bands, spectral indices; C = spectral bands, image texture; and 
D = spectral bands. 

Rank A B C D 

1 B4 B11 B11 B11 

2 B11 B8 B8 B8 

3 NDVI B5 B5 B3 

4 B2 B2 B2 B2 

5 B3 B12 B12 B4 

6 B12 NDWI B4 B5 

3.3. Mapping the Wetlands Using the Best Performing Classifiers 

We mapped the wetlands the two best-performing classifiers (GTB and RF), using Sentinel-2 
imagery through the GEE environment (Figure 2). 
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Figure 2. Resulting classified map of the BWG wetlands using the (a) GTB and (b) RF 
models. The wetland class is highlighted in yellow. 

4. Discussion 

4.1. Performance of the Six Classifiers 

We conducted an assessment of the effectiveness of six popular ML classifiers in the framework 
of small-sized wetland mapping. Our findings revealed a range of performance levels among the 
classifiers. Notably, RF exhibited a higher degree of accuracy, followed by CART, SVM and GTB. 
Conversely, KNN and NB exhibited comparatively lower levels of accuracy. These results agreed with 
prior research findings that support the efficacy of decision tree-based classifiers for wetland mapping 
[17,18,20]. 

In contrast to our results, Gemechu et al. [26] presented findings indicating that SVM classifier 
outperformed RF and other classifiers in terms of accuracy, achieving levels as high as 98.1% in 
wetland mapping. They particularly underscored the proficiency of SVM in handling high-dimensional 
data and capturing complex relationships, which ultimately contributed to improved classification 
accuracy. Furthermore, a study by Amani et al. [39] reported satisfactory results with the k-nearest 
neighbors (KNN) classifier when applied to wetland mapping using remote sensing data. Their results 
placed importance on the significance of optimizing KNN algorithm parameters to achieve precise 
wetland classification. These divergent results underscore the importance of taking into account 
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specific contextual variables and parameters when making decisions regarding classifier selection for 
wetland mapping applications. Considerations relating to the study area, dataset characteristics and 
optimization techniques should be weighed cautiously to ensure dependable and accurate wetland 
classification results. 

Furthermore, Xing et al. [40] conducted a comprehensive investigation of ensemble classifiers, 
among them RF, in the context of wetland mapping. Their investigation yielded high overall accuracy 
when using RF; however, they observed a tendency for overestimating wetland areas attributed to 
inherent algorithmic characteristics. In response, they recommended incorporating post-processing 
techniques to mitigate this challenge and enhance the precision of wetland mapping.  

Our study contributes to the existing pool of knowledge pertaining to wetland mapping by 
conducting a thorough evaluation of various ML classifiers aimed at mapping small-sized wetlands. 
Although our findings indicated a relatively high level of accuracy in the case of decision tree-based 
classifiers, it remains imperative for future research studies to continue exploring the performance of 
the classifiers within different contextual frameworks. Additionally, the prospect of integrating 
complementary approaches to advance wetland mapping accuracy warrants further investigation. 

4.2. Spatial Distribution of Wetlands 

One of our primary objectives was the precise mapping of small-sized wetlands, a task for which 
conventional approaches, illustrated by the NWI, often prove inadequate due to their inability to 
accurately delineate these wetland features. To address this critical gap, we utilized higher resolution 
Sentinel-2 imagery and centered our methodology on a multifaceted approach and employed a diverse 
set of variables to map the spatial distribution of these wetlands.  

Our findings agreed with the results of prior research studies that have underscored the limitations 
of the NWI in effectively delineating small wetlands. Du et al. [41] conducted an assessment of the 
NWI program and revealed the challenges faced in achieving precision in wetland mapping, 
particularly when dealing with the smaller wetland patches – attributable to the NWI adoption of a 
relatively larger mapping unit, approximately 0.20 hectares. Similarly, Chignell et al. [42] expressed 
the limitations of the NWI, especially when applied in remote and forested terrains and advocated for 
the integration of supplementary methodologies to improve the mapping of wetlands. These studies 
support the compelling necessity for alternative methodologies that could overcome the limitations 
inherent in traditional wetland mapping approaches. 

Numerous studies have documented the challenges in utilizing remote sensing technologies for 
wetland mapping, particularly in environments characterized by intricate landscapes or dense 
vegetation cover. Sánchez-Espinosa and Schröder [43] reported difficulties when mapping wetlands 
using Landsat imagery, a dilemma mostly related to mixed land cover types and spectral confusion. 
Further, Zhang et al. [32] identified restrictions in the classification of wetlands with Sentinel-2 data 
within regions categorized by dense vegetation and spectral signatures that exhibit significant overlap. 
These disagreements in findings underscore the importance of carefully considering the unique 
characteristics of the study area and the primary challenges associated with remote sensing methods 
in wetland mapping. 

In our study, we overcome the limitations posed by the NWI by utilizing a higher spatial 
resolution Sentinel-2 imagery, thus enabling a more accurate mapping of small wetlands. This 
approach provides invaluable insights into the spatial distribution of these ecologically pivotal 
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ecosystems, as represented by the BWG area. However, it is important to acknowledge the limitations 
of our models, such as potential challenges in classifying complex landscapes and the need for further 
research to integrate additional data sources into the algorithm. 

4.3. Importance of Input Variables 

The consistent patterns observed across the spectrum of variables used in the ML models – various 
spectral bands, spectral indices and image texture attributes – have underscored the importance of 
specific variables in the accurate delineation of wetlands. Particularly, the B4 and B11 bands, in 
combination with the NDVI, have emerged as pivotal variables for wetland mapping. The spectral 
bands B8, B5 and B2 also exhibited importance when discriminating wetlands from other land cover 
classes. Our results align with the findings by Mahdianpari et al. [22] that emphasized the critical role 
of SWIR bands and spectral indices in the classification of wetlands. Further, Judah and Hu [37] 
emphasized the significance of NDVI, particularly when derived from images during the spring 
months, as a critical variable for wetland classification. The absence of image texture as an important 
variable in the classification process supports the observations presented by Liu et al. [24] when 
mapping wetlands within the Tibetan Plateau. These consistencies in research results highlight the 
importance of specific variables that significantly contribute to the efficacy of wetland classification 
methodologies. 

4.4. Implications 

Our research results have considerable implications for conservation, operation and scientific 
exploration of small-sized wetlands. The accuracy achieved in mapping these wetlands through the 
utilization of advanced ML techniques and remote sensing data offers critical insights regarding their 
spatial distribution, characteristics and their ecological significance. 

Wetland mapping is a crucial component of conservation and management initiatives, particularly 
when addressing small-scale wetlands due to their ecological importance as habitats for a diverse array 
of plant and animal species [44]. The mapping of these wetlands not only facilitates the implementation 
of targeted conservation strategies, including habitat protection and restoration planning but also 
ensures the preservation of biodiversity and the continuity of essential ecosystem functions [45]. 
Furthermore, the mapping of small-sized wetlands proves essential for the comprehensive evaluation 
and quantification of their contributions to ecosystem services. These ecosystems play an active role 
in vital processes such as water purification, flood regulation and carbon sequestration [46]. The 
precision achieved through accurate wetland mapping streamlines the assessment of their spatial 
distribution, facilitating the precise quantification of their roles in delivering ecosystem services. This, 
consecutively, encourages decision-making that is more informed and discerning. 

This research could provide insights for BWG wetlands habitat assessment and restoration 
initiatives, particularly given the key role of our study area as a critical habitat for numerous rare and 
endangered flora and fauna species. The precise mapping of wetlands not only facilitates the 
identification of habitat areas of utmost importance but also helps in the identification of tailored 
restoration efforts. These efforts bolster hydrological connectivity and thereby advancing the cause of 
biodiversity conservation and the rejuvenation of ecosystems [47].  
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Efforts to monitor of small-sized wetlands could greatly benefit from accurate mapping data [45]. 
Researchers could utilize these mapped wetlands as study sites to investigate and assess environmental 
impacts, and monitor changes over time. The availability of reliable wetland maps enhances the 
efficiency and accuracy of field data collection, optimizing resource allocation and permitting a more 
focused investigation into specific wetland areas of interest [22,37]. Finally, our results underscore the 
importance of wetland mapping in supporting policy development and land-use planning. Including 
accurate wetland information in land use plans and zoning regulations ensures the protection of these 
ecologically sensitive areas and minimizes potential conflicts between wetland conservation and 
development activities. Reliable wetland maps aid in assessing the ecological implications of proposed 
land use changes and support sustainable land management practices. 

5. Conclusions 

This research highlights the importance and effectiveness of utilizing advanced machine learning 
techniques and remote sensing data for mapping small-sized wetlands. The findings demonstrated that 
machine learning classifiers, such as RF and GTB, can accurately classify and map small-sized 
wetlands. These classifiers outperformed other methods, such as SVM, CART, KNN and NB, in terms 
of overall accuracy and agreement with reference classifications. 

Accurately mapping small-sized wetlands has benefits for wetland conservation, management 
and research. Apart from enabling targeted conservation efforts, climate change adaptation strategies 
and habitat assessment and restoration, it is essential for scientific research and informed policy 
support. Our results and methods could contribute to mapping small-sized wetlands, and provide 
necessary maps for wetland preservation. The application of advanced machine learning techniques 
using GEE in small-sized wetland mapping creates ideas for further research and application in other 
geographic regions and ecosystems. Overall, this study emphasized the significance of accurate 
wetland mapping using machine learning approaches. It serves as a foundation for practical 
applications aimed at improving wetland management and promoting their long-term sustainability. 
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