Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Modeling and estimating soil organic carbon using relevant explicatory waveband variables in machine learning environment

ABSTRACT

Soil Organic Carbon (SOC) is the most important indicator of soil health and determines long-term crop productivity. Here, we applied the Random Forest regression model to soil hyperspectral data to determine the important spectral bands and regions for SOC retrieval. Multiple existing studies already identified specific wavelength bands that could be good indicators of SOC. However, there is no hyperspectral-based method that is currently available to simultaneously investigate these identified specific wavelength regions for SOC. To help fill this gap, we developed the Perimeter-Area Soil Carbon Index (PASCI) that utilized optimal SOC spectral bands and then evaluated its robustness for SOC prediction and retrieval against other existing indices. The results of regression analysis between SOC and PASCI values showed a significant relationship (r2 = 0.76; p < 0.05). A significant statistical relationship (r2 = 0.73) was also observed between SOC and the sum indices. The results from this study have advanced our understanding of the optimal spectral bands for SOC. Finally, the PASCI could be applied to hyperspectral and multispectral images to remotely quantify, predict, and map SOC.

Access the full article here:
Salas EAL, Kumaran SS (2023) Perimeter-Area Soil Carbon Index (PASCI): Modeling and estimating soil organic carbon using relevant explicatory waveband variables in machine learning environment, Geo-spatial Information Science. doi: 10.1080/10095020.2023.2211612

Leave a Reply

Your email address will not be published. Required fields are marked *

thirteen + 2 =

This site uses Akismet to reduce spam. Learn how your comment data is processed.