Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

How Climate Change Affects Parthenogenetic Whiptails

Citation: Alvarez, Guillermo; Salas, Eric A.L.; Harings, Nicole M.; Boykin, Kenneth G. 2017. “Projections of Future Suitable Bioclimatic Conditions of Parthenogenetic Whiptails.” Climate 5, no. 2: 34.

Abstract:

This paper highlights the results of bioclimatic-envelope modeling of whiptail lizards belonging to the Aspidoscelis tesselata species group and related species. We utilized five species distribution models (SDM) including Generalized Linear Model, Random Forest, Boosted Regression Tree, Maxent and Multivariate Adaptive Regression Splines to develop the present day distributions of the species based on climate-driven models alone. We then projected future distributions of whiptails using data from four climate models run according to two greenhouse gas concentration scenarios (RCP 4.5 and RCP 8.5). Results of A. tesselata species group suggested that climate change will negatively affect the bioclimatic habitat and distribution of some species, while projecting gains in suitability for others. Furthermore, when the species group was analyzed together, climate projections changed for some species compared to when they were analyzed alone, suggesting significant loss of syntopic areas where suitable climatic conditions for more than two species would persist. In other words, syntopy within members of the species group will be drastically reduced according to future bioclimatic suitability projections in this study.

Keywords:

parthenogenetic whiptails; climate projections; bioclimatic-envelope modeling; species distribution models

Download the full paper here:

Full text in PDF