Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Exploring field vegetation reflectance as an indicator of soil contamination in river floodplains

Kooistra L, Salas EAL, Clevers JGPW, Wehrens R, Leuven RSEW, Nienhuis PH, Buydens LMC (2004) Exploring field vegetation reflectance as an indicator of soil contamination in river floodplains. Environmental Pollution 127(2): 281-290.

Abstract: This study investigated the relation between vegetation reflectance and elevated concentrations of the metals Ni, Cd, Cu, Zn and Pb in river floodplain soils. High-resolution vegetation reflectance spectra in the visible to near-infrared (400–1350 nm) were obtained using a field radiometer. The relations were evaluated using simple linear regression in combination with two spectral vegetation indices: the Difference Vegetation Index (DVI) and the Red-Edge Position (REP). In addition, a multivariate regression approach using partial least squares (PLS) regression was adopted. The three methods achieved comparable results. The best R^2 values for the relation between metals concentrations and vegetation reflectance were obtained for grass vegetation and ranged from 0.50 to 0.73. Herbaceous species displayed a larger deviation from the established relationships, resulting in lower R^2 values and larger cross-validation errors. The results corroborate the potential of hyperspectral remote sensing to contribute to the survey of elevated metal concentrations in floodplain soils under grassland using the spectral response of the vegetation as an indicator. Additional constraints will, however, have to be taken into account, as results are resolution- and location-dependent.

Download full PDF text.

Leave a Reply

Your email address will not be published. Required fields are marked *

five − 1 =

This site uses Akismet to reduce spam. Learn how your comment data is processed.